Home
Nanotechnology
Services
About us
Gallery
professional Nano Coating
奈米技術
Nanotechnology
是一门应用科学,其目的在于研究于奈米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国国家奈米科技启动计划将其定义为「1至100奈米尺寸尤其是现存科技在奈米规模时的延伸」。奈米科技的世界为原子、分子、高分子、量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。
微小性的持续探究使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成奈米结构。奈米材质,不论是由上至下制成(将块材缩至奈米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在奈米尺度时占了很重要的地位。
奈米科技的神奇之处在于物质在奈米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用,也可以制造许多有趣的材质。
仿生学
Bionics
是模仿生物的特殊本领的一门科学。仿生学了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。 1960年由美国的J.E.Steele首先提出。
仿生学这个名词来源于希腊文「Bio」,意思是「生命」,字尾「Nic」有「具有……的性质」的意思。他认为「仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学」。
仿生学主要是观察、研究和模拟自然界生物各种各样的特殊本领,包括生物本身结构、原理、行为、各种器官功能、体内的物理和化学过程、能量的供给、记忆与传递等。从而为科学技术中利用这些原理,提供新的设计思想、工作原理和系统架构的技术科学。
莲花效应
Lotus Effect
也称作荷叶效应,是指莲叶表面具有超疏水性以及自洁(Self-Cleaning)的奈米技术特性。在东方文化里,莲花是纯净的象征。虽然,莲花喜欢生长在泥泞的湿地,但其叶子和花仍保持干净,这就是自洁的效果。植物学家研究莲叶表面发现它们有一个自然洁净的机制。
莲叶的微观结构和表面化学意味着不会被水弄湿;水滴在叶片表面就如水银一般,并且可以带走污泥、小昆虫及污染物。而且,水滴在芋头叶子亦有相似的行为。
一些奈米科技学家正在开发一些方法,使涂料、屋瓦、纺织品和其它表面可保持干燥和干净,就如莲叶表面的方式相似。通常使用氟化物或矽处理表面而达到此效果;利用葡萄糖和蔗糖化合成聚乙二醇亦可达到此效果。有自洁效应的新涂料,目前已被发展,甚至有自洁功能的玻璃板也已经进入市场,使用于温室的屋顶等。
让铝表面有疏水性质的方法是将铝浸在氢氧化钠几个小时之后,再利用旋转涂覆的方法,涂上一层厚度为2 Nm 的全氟壬烷(Perfluorononane)。这样将使接触角从67°变成168°,此现象可用Cassie's Law解释。电子显微镜可显示铝的表面像莲叶表面一样有多孔微小的结构。
来自 维基百科
© 2015 wetsolver